
NEWS for pqR version 2.15.0 (2013-12-29)

NEWS pqR News

CHANGES IN VERSION RELEASED 2013-12-29

INTRODUCTION:

� This is the first publicized release of pqR after pqR-2013-07-22. A verson dated
2013-11-28 was released for testing; it differs from this release only in bug and docu-
mentation fixes, which are not separately detailed in this NEWS file.

� pqR is based on R-2.15.0, distributed by the R Core Team, but improves on it in many
ways, mostly ways that speed it up, but also by implementing some new features and
fixing some bugs. See the notes below on earlier pqR releases for general discussion
of pqR, and for information that has not changed from previous releases of pqR.

� The most notable change in this release is that “task merging” is now implemented.
This can speed up sequences of vector operations by merging several operations
into one, which reduces time spent writing and later reading data in memory. See
help(merging) and the item below for more details.

� This release also includes other performance improvements, bug fixes, and code
cleanups, as detailed below.

INSTALLATION AND TESTING:

� Additional configuration options are now present to allow enabling and disabling of
task merging, and more generally, of the deferred evaluation framework needed for
both task merging and use of helper threads. By default, these facilities are en-
abled. The --disable-task-merging option to ./configure disables task merging,
--disable-helper-threads disables support for helper threads (as before), and --

disable-deferred-evaluation disables both of these features, along with the whole
deferred evaluation framework. See the R-admin manual for more details.

� See the pqR wiki at https://github.com/radfordneal/pqR/wiki for the latest news
regarding systems and packages that do or do not work with pqR.

� Note that any packages (except those written only in R, plus C or Fortran routines
called by .C or .Fortran) that were compiled and installed under R Core versions of
R must be re-installed for use with pqR, as is generally the case with new versions
of R (although it so happens that it is not necessary to re-install packages installed
with pqR-2013-07-22 with this release, because the formats of the crucial internal
data structures happen not to have changed).

1

2 NEWS

� Additional tests of matrix multiplication (%*%, crossprod, and tcrossprod) have
been written. They are run with make check or make check-all.

INTERNAL STRUCTURES AND APPLICATION PROGRAM INTER-
FACE:

� The table of built-in function names, C functions implementing them, and operation
flags, which was previously found in src/main/names.c, has been split into multiple
tables, located in the source files that define such built-in functions (with only a few
entries still in names.c). This puts the descriptions of these built-in functions next
to their definitions, improving maintainability, and also reduces the number of global
functions. This change should have no effects visible to users.

� The initialization for fast dispatch to some primitive functions is now done in names.c,
using tables in other source files analogous to those described in the point just above.
This is cleaner, and eliminates an anomaly in the previous versions of pqR that a
primitive function could be slower the first time it was used than when used later.

PERFORMANCE IMPROVEMENTS:

� Some sequences of vector operations can now be merged into a single operation, which
can speed them up by eliminating memory operations to store and fetch intermediate
results. For example, when v is a long vector, the expression exp(v+1) can be merged
into one task, which will compute exp(v[i]+1) for each element, i, of v in a single
loop.
Currently, such “task merging” is done only for (some) operations in which only one
operand is a vector. When there are helper threads (which might be able to do some
operations even faster, in parallel) merging is done only when one of the operations
merged is a simple addition, subtraction, or multiplication (with one vector operand
and one scalar operand).
See help(merging) for more details.

� During all garbage collections, any tasks whose outputs are not referenced are now
waited for, to allow memory used by their outputs to be recovered. (Such unreferenced
outputs should be rare in real programs.) In a full garbage collection, tasks with large
inputs or outputs that are referenced only as task inputs are also waited for, so that
the memory they occupy can be recovered.

� The built-in C matrix multiplication routines and those in the supplied BLAS have
both been sped up, especially those used by crossprod and tcrossprod. This will of
course have no effect if a different BLAS is used and the mat_mult_with_BLAS option
is set to TRUE.

� Matrix multiplications in which one operand can be recognized as the result of a trans-
pose operation are now done without actually creating the transpose as an interme-
diate result, thereby reducing both computation time and memory usage. Effectively,
these uses of the %*% operator are converted to uses of crossprod or tcrossprod.
See help("%*%") for details.

� Speed of ifelse has been improved (though it’s now slower when the condition is
scalar due to the bug fix mentioned below).

� Inputs to the mod operator can now be piped. (Previously, this was inadvertently
prevented in some cases.)

� The speed of the quick check for NA/NaN that can be enabled with -

DENABLE_ISNAN_TRICK in CFLAGS has been improved.

NEWS 3

BUG FIXES:

� Fixed a bug in ifelse with scalar condition but other operands with length greater
than one. (Pointed out by Luke Tierney.)

� Fixed a bug stemming from re-use of operand storage for a result (pointed out by
Luke Tierney) illustrated by the following:

A <- array(c(1), dim = c(1,1), dimnames = list("a", 1))

x <- c(a=1)

A/(pi*x)

� The --disable-mat-mult-with-BLAS-in-helpers configuration setting is now re-
spected for complex matrix multiplication (previously it had only disabled use of the
BLAS in helper threads for real matrix multiplication).

� The documentation for aperm now says that the default method does not copy at-
tributes (other than dimensions and dimnames). Previously, it incorrecty said it did
(as is the case also in R-2.15.0 and R-3.0.2).

� Changed apply from previous versions of pqR to replicate the behaviour seen in R-
2.15.0 (and later R Core version) when the matrix or array has a class attribute.
Documented this behaviour (which is somewhat dubious and convoluted) in the help
entry for apply. This change fixes a problem seen in package TSA (and probably
others).

� Changed rank from prevous versions of pqR to replicate the behaviour when it is ap-
plied to data frames that is seen in R-2.15.0 (and later R Core versions). Documented
this (somewhat dubious) behaviour in the help entry for rank. This change fixes a
problem in the coin package.

� Fixed a bug in keeping track of references when assigning repeated elements into a
list array.

� Fixed the following bug (also present in R-2.15.0 and R-3.0.2):

v <- c(1,2)

m <- matrix(c(3,4),1,2)

print(t(m)%*%v)

print(crossprod(m,v))

in which crossprod gave an error rather than produce the answer for the correspond-
ing use of %*%.

� Bypassed a problem with the Xcode gcc compiler for the Mac that led to it falsely
saying that using -DENABLE ISNAN TRICK in CFLAGS doesn’t work.

CHANGES IN VERSION RELEASED 2013-07-22

INTRODUCTION:

� pqR is based on R-2.15.0, distributed by the R Core Team, but improves on it in many
ways, mostly ways that speed it up, but also by implementing some new features
and fixing some bugs. See the notes below, on the release of 2013-06-28, for general
discussion of pqR, and for information on pqR that has not changed since that release.

� This updated release of pqR provides some performance enhancements and bug fixes,
including some from R Core releases after R-2.15.0. More work is still needed to
incorporate improvements in R-2.15.1 and later R Core releases into pqR.

4 NEWS

� This release is the same as the briefly-released version of 2013-17-19, except that
it fixes one bug and one reversion of an optimization that were introduced in that
release, and tweaks the Windows Makefiles (which are not yet fully tested).

FEATURE AND DOCUMENTATION CHANGES:

� Detailed information on what operations can be done in helper threads is now provided
by help(helpers).

� Assignment to parts of a vector via code such as v[[i]]<-value and v[ix]<-values

now automatically converts raw values to the appropriate type for assignment into
numeric or string vectors, and assignment of numeric or string values into a raw vector
now results in the raw vector being first converted to the corresponding type. This is
consistent with the existing behaviour with other types.

� The allowed values for assignment to an element of an ”expression” list has been
expanded to match the allowed values for ordinary lists. These values (such as function
closures) could previously occur in expression lists as a result of other operations (such
as creation with the expression primitive).

� Operations such as v <- pairlist(1,2,3); v[[-2]] <- NULL now raise an er-
ror. These operations were previously documented as being illegal, and
they are illegal for ordinary lists. The proper way to do this deletion is
v <- pairlist(1,2,3); v[-2] <- NULL.

� Raising -Inf to a large value (eg, (-Inf)^(1e16)) no longer produces an incom-
prehensible warning. As before, the value returned is Inf, because (due to their
limited-precision floating-point representation) all such large numbers are even inte-
gers.

FEATURE CHANGES CORRESPONDING TO THOSE IN LATER R
CORE RELEASES:

� From R-2.15.1: On Windows, there are two new environment variables which control
the defaults for command-line options.
If R_WIN_INTERNET2 is set to a non-empty value, it is as if ‘--internet2’ was used.
If R_MAX_MEM_SIZE is set, it gives the default memory limit if ‘--max-mem-size’ is
not specified: invalid values being ignored.

� From R-2.15.1: The NA warning messages from e.g. pchisq() now report the call to
the closure and not that of the .Internal.

� The following included software has been updated to new versions: zlib to 1.2.8,
LZMA to 5.0.4, and PCRE to 8.33.

INSTALLATION AND TESTING:

� See the pqR wiki at https://github.com/radfordneal/pqR/wiki for the latest news
regarding systems and packages that do or do not work with pqR.

� Note that any previosly-installed packages must be re-installed for use with pqR (as
is generally the case with new versions of R), except for those written purely in R.

� It is now known that pqR can be successfully installed under Mac OS X for use via the
command line (at least with some versions of OS X). The gcc 4.2 compiler supplied
by Apple with Xcode works when helper threads are disabled, but does not have
the full OpenMP support required for helper threads. For helper threads to work, a

NEWS 5

C compiler that fully supports OpenMP is needed, such as gcc 4.7.3 (available via
macports.org).
The Apple BLAS and LAPACK routines can be used by giving the
--with-blas=’-framework vecLib’ and --withlapack options to configure. This
speeds up some operations but slows down others.
The R Mac GUI would need to be recompiled for use with pqR. There are problems
doing this unless helper threads are disabled (see pqR issue #17 for discussion).
Compiled binary versions of pqR for Mac OS X are not yet being supplied. Installation
on a Mac is recommended only for users experienced in installation of R from source
code.

� Success has also been reported in installing pqR on a Windows system, including
with helper threads, but various tweaks were required. Some of these tweaks are
incorporated in this release, but they are probably not sufficient for installation ”out
of the box”. Attempting to install pqR on Windows is recommended only for users
who are both experienced and adventurous.

� Compilation using the -O3 option for gcc is not recommended. It speeds up some
operations, but slows down others. With gcc 4.7.3 on a 32-bit Intel system running
Ubuntu 13.04, compiling with -O3 causes compiled functions to crash. (This is not a
pqR issue, since the same thing happens when R-2.15.0 is compiled with -O3).

INTERNAL STRUCTURES AND APPLICATION PROGRAM INTER-
FACE:

� The R internals manual now documents (in Section 1.8) a preliminary set of conven-
tions that pqR follows (not yet perfectly) regarding when objects may be modified,
and how NAMEDCNT should be maintained. R-2.15.0 did not follow any clear con-
ventions.

� The documentation in the R internals manual on how helper threads are implemented
in pqR now has the correct title. (It would previously have been rather hard to notice.)

PERFORMANCE IMPROVEMENTS:

� Some unnecessary duplication of objects has been eliminated. Here are three exam-
ples: Creation of lists no longer duplicates all the elements put in the list, but instead
increments NAMEDCNT for these elements, so that

a <- numeric(10000)

k <- list(1,a)

no longer duplicates a when k is created (though a duplication will be needed later if
either a or k[[2]] is modified). Furthermore, the assignment below to b$x, no longer
causes duplication of the 10000 elements of y:

a <- list (x=1, y=seq(0,1,length=10000))

b <- a

b$x <- 2

Instead, a single vector of 10000 elements is shared between a$y and b$y, and will be
duplicated later only if necessary. Unnecessary duplication of a 10000-element vector
is also avoided when b[1] is assigned to in the code below:

a <- list (x=1, y=seq(0,1,length=10000))

b <- a$y

a$y <- 0

b[1] <- 1

6 NEWS

The assignment to a$y now reduces NAMEDCNT for the vector bound to b, allowing it
to be changed without duplication.

� Assignment to part of a vector using code such as v[101:200]<-0 will now not actu-
ally create a vector of 100 indexes, but will instead simply change the elements with
indexes 101 to 200 without creating an index vector. This optimization has not yet
been implemented for matrix or array indexing.

� Assignments to parts of vectors, matrices, and arrays using ”[” has been sped up by
detailed code improvements, quite substantially in some cases.

� Subsetting of arrays of three or more dimensions using ”[”has been sped up by detailed
code improvements.

� Pending summations of one-argument mathematical functions are now passed on
by sum. So, for example, in sum(exp(a)) + sum(exp(b)), the two summations of
exponentials can now potentially be done in parallel.

� A full garbage collection now does not wait for all tasks being done by helpers to
complete. Instead, only tasks that are using or computing variables that are not
otherwise referenced are waited for (so that this storage can be reclaimed).

BUG FIXES:

� A bug that could have affected the result of sum(abs(v)) when it is done by a helper
thread has been fixed.

� A bug that could have allowed as.vector, as.integer, etc. to pass on an object
still being computed to a caller not expecting such a pending object has been fixed.

� Some bugs in which production of warnings at inopportune times could have caused
serious problems have been fixed.

� The bug illustrated below (pqR issue #13) has been fixed:

> l = list(list(list(1)))

> l1 = l[[1]]

> l[[c(1,1,1)]] <- 2

> l1

[[1]]

[[1]][[1]]

[1] 2

� Fixed a bug (also present in R-2.15.0 and R-3.0.1) illustrated by the following code:

> a <- list(x=c(1,2),y=c(3,4))

> b <- as.pairlist(a)

> b$x[1] <- 9

> print(a)

$x

[1] 9 2

$y

[1] 3 4

The value printed for a has a$x[1] changed to 9, when it should still be 1. See pqR
issue #14.

� Fixed a bug (also present in R-2.15.0 and R-3.0.1) in which extending an ”expression”
by assigning to a new element changes it to an ordinary list. See pqR issue #15.

NEWS 7

� Fixed several bugs (also present in R-2.15.0 and R-3.0.1) illustrated by the code below
(see pqR issue #16):

v <- c(10,20,30)

v[[2]] <- NULL # wrong error message

x <- pairlist(list(1,2))

x[[c(1,2)]] <- NULL # wrongly gives an error, referring to misuse

of the internal SET_VECTOR_ELT procedure

v<-list(1)

v[[quote(abc)]] <- 2 # internal error, this time for SET_STRING_ELT

a <- pairlist(10,20,30,40,50,60)

dim(a) <- c(2,3)

dimnames(a) <- list(c("a","b"),c("x","y","z"))

print(a) # doesn't print names

a[["a","x"]] <- 0 # crashes with a segmentation fault

BUG FIXES CORRESPONDING TO THOSE IN LATER R CORE RE-
LEASES:

� From R-2.15.1: formatC() uses the C entry point str_signif which could write
beyond the length allocated for the output string.

� From R-2.15.1: plogis(x, lower = FALSE, log.p = TRUE) no longer underflows
early for large x (e.g. 800).

� From R-2.15.1: ?Arithmetic’s “1 ^ y and y ^ 0 are 1, always” now also applies for
integer vectors y.

� From R-2.15.1: X11-based pixmap devices like png(type = "Xlib") were trying to
set the cursor style, which triggered some warnings and hangs.

� From R-3.0.1 patched: Fixed comment-out bug in BLAS, as per PR 14964.

CHANGES IN VERSION RELEASED 2013-06-28

INTRODUCTION:

� This release of pqR is based on R-2.15.0, distributed by the R Core Team, but im-
proves on it in many ways, mostly ways that speed it up, but also by implementing
some new features and fixing some bugs. One notable speed improvement in pqR is
that for systems with multiple processors or processor cores, pqR is able to do some
numeric computations in parallel with other operations of the interpreter, and with
other numeric computations.

� This is the second publicised release of pqR (the first was on 2013-06-20, and there
were earlier unpublicised releases). It fixes one significant pqR bug (that could cause
two empty strings to not compare as equal, reported by Jon Clayden), fixes a bug
reported to R Core (PR 15363) that also existed in pqR (see below), fixes a bug in
deciding when matrix multiplies are best done in a helper thread, and fixes some issues
preventing pqR from being built in some situations (including some partial fixes for
Windows suggested by ”armgong”). Since the rest of the news is almost unchanged

8 NEWS

from the previous release, I have not made a separate news section for this release.
(New sections will be created once new releases have significant differences.)

� This section documents changes in pqR from R-2.15.0 that are of direct interest
to users. For changes from earlier version of R to R-2.15.0, see the ONEWS,
OONEWS, and OOONEWS files. Changes of little interest to users, such as code
cleanups and internal details on performance improvements, are documented in
the file MODS, which relates these changes to branches in the code repository at
github.com/radfordneal/pqR.

� Note that for compatibility with R’s version system, pqR presently uses the same
version number, 2.15.0, as the version of R on which it is based. This allows checks
for feature availability to continue to work. This scheme will likely change in the
future. Releases of pqR with the same version number are distinguished by release
date.

� See radfordneal.github.io/pqR for current information on pqR, including announce-
ments of new releases, a link to the page for making and viewing reports of bugs and
other issues, and a link to the wiki page containing information such as systems on
which pqR has been tested.

FEATURE CHANGES:

� A new primitive function get_rm has been added, which removes a variable while
returning the value it had when removed. See help(get_rm) for details, and how
this can sometimes improve efficiency of R functions.

� An enhanced version of the Rprofmem function for profiling allocation of vectors has
been implemented, that can display more information, and can output to the terminal,
allowing the source of allocations to more easily be determined. Also, Rprofmem is
now always accessible (not requiring the --enable-memory-profiling configuration
option). Its overhead when not in use is negligible.
The new version allows records of memory allocation to be output to the terminal,
where their position relative to other output can be informative (this is the default for
the new Rprofmemt variant). More identifying information, including type, number
of elements, and hexadecimal address, can also be output. For more details on these
and other changes, see help(Rprofmem).

� A new primitive function, pnamedcnt, has been added, that prints the NAMED-
CNT/NAMED count for an R object, which is helpful in tracking when objects will
have to be duplicated. For details, see help(pnamedcnt).

� The tracemem function is defunct. What exactly it was supposed to do in R-2.15.0
was unclear, and optimizations in pqR make it even less clear what it should do. The
bit in object headers that was used to implement it has been put to a better use
in pqR. The --enable-memory-profiling configuration option used to enable it no
longer exists.
The retracemem function remains for compatibility (doing nothing). The Rprofmemt

and pnamedcnt functions described above provide alternative ways of gaining insight
into memory allocation behaviour.

� Some options that can be set by arguments to the R command can now also
be set with environment variables, specifically, the values of R DEBUGGER,
R DEBUGGER ARGS, and R HELPERS give the default when --debugger,
--debugger-args, and --helpers are not specified on the command line. This fea-

NEWS 9

ture is useful when using a shell file or Makefile that contains R commands that one
would rather not have to modify.

INSTALLATION AND TESTING:

� The procedure for compiling and installing from source is largely unchanged from
R-2.15.0. In particular, the final result is a program called ”R”, not ”pqR”, though of
course you can provide a link to it called ”pqR”. Note that (as for R-2.15.0) it is not
necessary to do an ”install” after ”make” — one can just run bin/R in the directory
where you did ”make”. This may be convenient if you wish to try out pqR along with
your current version of R.

� Testing of pqR has so far been done only on Linux/Unix systems, not on Windows or
Mac systems. There is no specific reason to believe that it will not work on Windows
or Mac systems, but until tests have been done, trying to use it on these systems
is not recommended. (However, some users have reported that pqR can be built
on Mac systems, as long as a C compiler fully supporting OpenMP is used, or the
--disable-helper-threads configuration option is used.)

� This release contains the versions of the standard and recommended packages that
were released with R-2.15.0. Newer versions may or may not be compatible (same as
for R-2.15.0).

� It is intended that this release will be fully compatible with R-2.15.0, but you will
need to recompile any packages (other that those with only R code) that you had
installed for R-2.15.0, and any other C code you use with R, since the format of
internal data structures has changed (see below).

� New configuration options relating to helper threads and to matrix multiplica-
tion now exist. For details, see doc/R-admin.html (or R-admin.pdf), or run
./configure --help.
In particular, the --disable-helper-threads option to configure will remove sup-
port for helper threads. Use of this option is advised if you know that multiple
processors or processor cores will not be available, or if you know that the C compiler
used does not support OpenMP 3.0 or 3.1 (which is used in the implementation of
the helpers package).

� Including -DENABLE_ISNAN_TRICK in CFLAGS will speed up checks for NA and NaN
on machines on which it works. It works on Intel processors (verified both empirically
and by consulting Intel documentation). It does not work on SPARC machines.

� The --enable-memory-profiling option to configure no longer exists. In pqR, the
Rprofmem function is always enabled, and the tracemem function is defunct. (See
discussion above.)

� When installing from source, the output of configure now displays whether standard
and recommended packages will be byte compiled.

� The tests of random number generation run with make check-all now set the ran-
dom number seed explicitly. Previously, the random number seed was set from the
time and process ID, with the result that these tests would occasionally fail non-
deterministically, when by chance one of the p-values obtained was below the thresh-
old used. (Any such failure should now occur consistently, rather than appearing to
be due to a non-deterministic bug.)

� Note that (as in R-2.15.0) the output of make check-all for the boot package in-
cludes many warning messages regarding a non-integer argument, and when byte

10 NEWS

compilation is enabled, these messages identify the wrong function call as the source.
This appears to have no wider implications, and can be ignored.

� Testing of the ”xz” compression method is now done with try, so that failure will be
tolerated on machines that don’t have enough memory for these tests.

� The details of how valgrind is used have changed. See the source file ‘memory.c’.

INTERNAL STRUCTURES AND APPLICATION PROGRAM INTER-
FACE:

� The internal structure of an object has changed, in ways that should be compatible
with R-2.15.0, but which do require re-compilation. The flags in the object header
for DEBUG, RSTEP, and TRACE now exist only for non-vector objects, which is sufficient
for their present use (now that tracemem is defunct).

� The sizes of objects have changed in some cases (though not most). For a 32-bit
configuration, the size of a cons cell increases from 28 bytes to 32 bytes; for a 64-bit
configuration, the size of a cons cell remains at 56 bytes. For a 32-bit configuration,
the size of a vector of one double remains at 32 bytes; for a 64-bit configuration (with
8-byte alignment), the size of a vector of one double remains at 48 bytes.

� Note that the actual amount of memory occupied by an object depends on the set of
node classes defined (which may be tuned). There is no longer a separate node class
for cons cells and zero-length vectors (as in R-2.15.0) — instead, cons cells share a
node class with whatever vectors also fit in that node class.

� The old two-bit NAMED field of an object is now a three-bit NAMEDCNT field, to
allow for a better attempt at reference counting. Versions of the the NAMED and
SET NAMED macros are still defined for compatibility. See the R-ints manual for
details.

� Setting the length of a vector to something less than its allocated length using
SETLENGTH is deprecated. The LENGTH field is used for memory allocation track-
ing by the garbage collector (as is also the case in R-2.15.0), so setting it to the wrong
value may cause problems. (Setting the length to more than the allocated length is
of course even worse.)

PERFORMANCE IMPROVEMENTS:

� Many detailed improvements have been made that reduce general interpretive over-
head and speed up particular functions. Only some of these improvements are noted
below.

� Numerical computations can now be performed in parallel with each other and with
interpretation of R code, by using “helper threads”, on machines with multiple pro-
cessors or multiple processor cores. When the output of one such computation is
used as the input to another computation, these computations can often be done in
parallel, with the output of one task being “pipelined” to the other task. Note that
these parallel execution facilities do not require any changes to user code — only that
helper threads be enabled with the --helpers option to the command starting pqR.
See help(helpers) for details.
However, helper threads are not used for operations that are done within the inter-
preter for byte-compiled code or that are done in primitive functions invoked by the
byte-code interpreter.
This facility is still undergoing rapid development. Additional documentation on
which operations may be done in parallel will be forthcoming.

NEWS 11

� A better attempt at counting how many ”names” an object has is now made, which
reduces how often objects are duplicated unnecessarily. This change is ongoing, with
further improvements and documentation forthcoming.

� Several primitive functions that can generate integer sequences — ”:”, seq.int, seq len,
and seq along — will now sometimes not generate an actual sequence, but rather just
a description of its start and end points. This is not visible to users, but is used to
speed up several operations.
In particular, ”for” loops such as for (i in 1:1000000) ... are now done without
actually allocating a vector to hold the sequence. This saves both space and time.
Also, a subscript such as 101:200 for a vector or as the first subscript for a matrix is
now (often) handled without actually creating a vector of indexes, saving both time
and space.
However, the above performance improvements are not effective in compiled code.

� Matrix multiplications with the %*% operator are now much faster when the operation
is a vector dot product, a vector-matrix product, a matrix-vector product, or more
generally when the sum of the numbers of rows and columns in the result is not much
less than their product. This improvement results from the elimination of a costly
check for NA/NaN elements in the operands before doing the multiply. There is no
need for this check if the supplied BLAS is used. If a BLAS that does not properly
handle NaN is supplied, the %*% operator will still handle NaN properly if the new
library of matrix multiply routines is used for %*% instead of the BLAS. See the next
two items for more relevant details.

� A new library of matrix multiply routines is provided, which is guaranteed to
handle NA/NaN correctly, and which supports pipelined computation with helper
threads. Whether this library or the BLAS routines are used for %*% is controlled
by the mat_mult_with_BLAS option. The default is to not use the BLAS, but the
--enable-mat-mult-with-BLAS-by-default configuration option will change this.
See help("%*%") for details.

� The BLAS routines supplied with R were modified to improve the performance of the
routines DGEMM (matrix-matrix multiply) and DGEMV (matrix-vector multiply).
Also, proper propagation of NaN, Inf, etc. is now always done in these routines.
This speeds up the %*% operator in R, when the supplied BLAS is used for matrix
multiplications, and speeds up other matrix operations that call these BLAS routines,
if the BLAS used is the one supplied.

� The low-level routines for generation of uniform random numbers have been improved.
(These routines are also used for higher-level functions such as rnorm.)
The previous code copied the seed back and forth to .Random.seed for every call of a
random number generation function, which is rather time consuming given that for
the default generator .Random.seed is 625 integers long. It also allocated new space
for .Random.seed every time. Now, .Random.seed is used without copying, except
when the generator is user-supplied.
The previous code had imposed an unnecessary limit on the length of a seed for a
user-supplied random number generator, which has now been removed.

� The any and all primitives have been substantially sped up for large vectors.
Also, expressions such as all(v>0) and any(is.na(v)), where v is a real vector,
avoid computing and storing a logical vector, instead computing the result of any or
all without this intermediate, looking at only as much of v as is needed to determine
the result. However, this improvement is not effective in compiled code.

12 NEWS

� When sum is applied to many mathematical functions of one vector argument, for
example sum(log(v)), the sum is performed as the function is computed, without a
vector being allocated to hold the function values. However, this improvement is not
effective in compiled code.

� The handling of power operations has been improved (primarily for powers of reals,
but slightly affecting powers of integers too). In particular, scalar powers of 2, 1, 0,
and -1, are handled specially to avoid general power operations in these cases.

� Extending lists and character vectors by assigning to an index past the end, and
deleting list items by assigning NULL have been sped up substantially.

� The speed of the transpose (t) function has been improved, when applied to real,
integer, and logical matrices.

� The cbind and rbind functions have been greatly sped up for large objects.

� The c and unlist functions have been sped up by a bit in simple cases, and by a lot
in some situations involving names.

� The matrix function has been greatly sped up, in many cases.

� Extraction of subsets of vectors or matrices (eg, v[100:200] or M[1:100,101:110])
has been sped up substantially.

� Logical operations and relational operators have been sped up in simple cases. Rela-
tional operators have also been substantially sped up for long vectors.

� Access via the $ operator to lists, pairlists, and environments has been sped up.

� Existing code for handling special cases of ”[” in which there is only one scalar index
was replaced by cleaner code that handles more cases. The old code handled only
integer and real vectors, and only positive indexes. The new code handles all atomic
vectors (logical, integer, real, complex, raw, and string), and positive or negative
indexes that are not out of bounds.

� Many unary and binary primitive functions are now usually called using a faster
internal interface that does not allocate nodes for a pairlist of evaluated arguments.
This change substantially speeds up some programs.

� Lookup of some builtin/special function symbols (eg, ”+” and ”if”) has been sped up
by allowing fast bypass of non-global environments that do not contain (and have
never contained) one of these symbols.

� Some binary and unary arithmetic operations have been sped up by, when possible,
using the space holding one of the operands to hold the result, rather than allocating
new space. Though primarily a speed improvement, for very long vectors avoiding
this allocation could avoid running out of space.

� Some speedup has been obtained by using new internal C functions for performing
exact or partial string matches in the interpreter.

BUG FIXES:

� The ”debug” facility has been fixed. Its behaviour for if, while, repeat, and for state-
ments when the inner statement was or was not one with curly brackets had made
no sense. The fixed behaviour is now documented in help(debug). (I reported this
bug and how to fix it to the R Core Team in July 2012, but the bug is still present
in R-3.0.1, released May 2013.)

� Fixed a bug in sum, where overflow is allowed (and not detected) where overflow can
actually be avoided. For example:

NEWS 13

> v<-c(3L,1000000000L:1010000000L,-(1000000000L:1010000000L))

> sum(v)

[1] 4629

Also fixed a related bug in mean, applied to an integer vector, which would arise only
on a system where a long double is no bigger than a double.

� Fixed diag so that it returns a matrix when passed a list of elements to put on the
diagonal.

� Fixed a bug that could lead to mis-identification of the direction of stack growth on a
non-Windows system, causing stack overflow to not be detected, and a segmentation
fault to occur. (I also reported this bug and how to fix it to the R Core Team, who
included a fix in R-2.15.2.)

� Fixed a bug where, for example, log(base=4) returned the natural log of 4, rather
than signalling an error.

� The documentation on what MARGIN arguments are allowed for apply has been clar-
ified, and checks for validity added. The call

> apply(array(1:24,c(2,3,4)),-3,sum)

now produces correct results (the same as when MARGIN is 1:2).

� Fixed a bug in which Im(matrix(complex(0),3,4)) returned a matrix of zero ele-
ments rather than a matrix of NA elements.

� Fixed a bug where more than six warning messages at startup would overwrite random
memory, causing garbage output and perhaps arbitrarily bizarre behaviour.

� Fixed a bug where LC PAPER was not correctly set at startup.

� Fixed gc.time, which was producing grossly incorrect values for user and system time.

� Now check for bad arguments for .rowSums, .colSums, .rowMeans, and .rowMeans
(would previously segfault if n*p too big).

� Fixed a bug where excess warning messages may be produced on conversion to RAW.
For instance:

> as.raw(1e40)

[1] 00

Warning messages:

1: NAs introduced by coercion

2: out-of-range values treated as 0 in coercion to raw

Now, only the second warning message is produced.

� A bug has been fixed in which rbind would not handle non-vector objects such as
function closures, whereas cbind did handle them, and both were documented to do
so.

� Fixed a bug in numeric deriv in stats/src/nls.c, where it was not duplicating when it
should, as illustrated below:

> x <- 5; y <- 2; f <- function (y) x

> numericDeriv(f(y),"y")

[1] 5

attr(,"gradient")

[,1]

[1,] 0

> x

[1] 5

14 NEWS

attr(,"gradient")

[,1]

[1,] 0

� Fixed a bug in vapply illustrated by the following:

X<-list(456)

f<-function(a)X

A<-list(1,2)

B<-vapply(A,f,list(0))

print(B)

X[[1]][1]<-444

print(B)

After the fix, the values in B are no long changed by the assignment to X. Similar bugs
in mapply, eapply, and rapply have also been fixed. I reported these bugs to r-devel,
and (different) fixes are in R-3.0.0 and later versions.

� Fixed a but in rep.int illustrated by the following:

a<-list(1,2)

b<-rep.int(a,c(2,2))

b[[1]][1]<-9

print(a[[1]])

� Fixed a bug in mget, illustrated by the following code:

a <- numeric(1)

x <- mget("a",as.environment(1))

print(x)

a[1] <- 9

print(x)

� Fixed bugs that the R Core Team fixed (differently) for R-2.15.3, illustrated by the
following:

a <- list(c(1,2),c(3,4))

b <- list(1,2,3)

b[2:3] <- a

b[[2]][2] <- 99

print(a[[1]][2])

a <- list(1+1,1+1)

b <- list(1,1,1,1)

b[1:4] <- a

b[[1]][1] <- 1

print(b[2:4])

� Fixed a bug illustrated by the following:

> library(compiler)

> foo <- function(x,y) UseMethod("foo")

> foo.numeric <- function(x,y) "numeric"

> foo.default <- function(x,y) "default"

> testi <- function () foo(x=NULL,2)

> testc <- cmpfun (function () foo(x=NULL,2))

> testi()

[1] "default"

NEWS 15

> testc()

[1] "numeric"

� Fixed several bugs that produced wrong results such as the following:

a<-list(c(1,2),c(3,4),c(5,6))

b<-a[2:3]

a[[2]][2]<-9

print(b[[1]][2])

I reported this to r-devel, and a (different) fix is in R-3.0.0 and later versions.

� Fixed bugs reported on r-devel by Justin Talbot, Jan 2013 (also fixed, differently, in
R-2.15.3), illustrated by the following:

a <- list(1)

b <- (a[[1]] <- a)

print(b)

a <- list(x=1)

b <- (a$x <- a)

print(b)

� Fixed svd so that it will not return a list with NULL elements. This matches the
behaviour of La.svd.

� Fixed (by a kludge, not a proper fix) a bug in the ”tre” package for regular expression
matching (eg, in sub), which shows up when WCHAR_MAX doesn’t fit in an ”int”. The
kludge reduces WCHAR_MAX to fit, but really the ”int” variables ought to be bigger.
(This problem showed up on a Raspberry Pi running Raspbian.)

� Fixed a minor error-reporting bug with (1:2):integer(0) and similar expressions.

� Fixed a small error-reporting bug with ”$”, illustrated by the following output:

> options(warnPartialMatchDollar=TRUE)

> pl <- pairlist(abc=1,def=2)

> pl$ab

[1] 1

Warning message:

In pl$ab : partial match of 'ab' to ''

� Fixed documentation error in R-admin regarding the
--disable-byte-compiled-packages configuration option, and changed the
DESCRIPTION file for the recommended mgcv package to respect this option.

� Fixed a bug reported to R Core (PR 15363, 2013-006-26) that also existed in pqR-
2013-06-20. This bug sometimes caused memory expansion when many complex as-
signments or removals were done in the global environment.

	NEWS

